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1 Introduction

This project aims to build a control policy that can robustly manipulate a simulated robotic arm
to pick-and-place boxes with arbitrary initial and target locations

2 Background

We used Proximal Policy Optimization [1]. Proximal Policy Optimization (PPO) is an on-policy
actor-critic algorithm. It consists of a policy πθ and a value function Vϕ, parameterized respectively
by θ and ϕ. PPO optimizes the policy πθ using policy gradient formed by advantage estimate At =
Aπ(st, at) = Qπ(st, at)− V π(st)

PPO minimizes a clipped-ratio loss over mini batches of trajectories collected under πθold :

Lπ(θ) = −Eπθ
[min (ρt(θ)At, 1− ϵ, 1 + ϵ)] , ρt(θ) =

πθ(at|st)
πθold(at|st)

. (1)

Qπθ (st, at) is estimated using empirical return and V πθ (st) ≈ Vϕ(st) is regressed against a target of
discounted returns, V targ

t , to minimize the Generalized Advantage Estimation:

LV (ϕ) = Eπθ

[(
Vϕ(st)− V targ

t

)2]
(2)

We simulate the pick-and-place environment using PyBullet (see Figure 1). In this environment,
the robotic arm’s goal is to reach to the green box (object location), pick it up, bring it to the red
platform (target location) and drop it there. Throughout the training we set the box mass to be 50kg.
Dimension of the box is 0.1m x 0.1m x 0.1m, and the dimension of the platform is 0.15m x 0.15m x
0.005m. The action space is a 7-dimensional vector corresponds to the joint torque. The values are

Figure 1: Training in Pybullet
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Phase Distance-term (x) Constraint Condition
01 > 0.05 / once the distance-term is < 0.05, enter phase 02
02 > 0.05 constraint created once the distance-term is < 0.05, enter phase 03
03 < 0.05 constraint removed box dropped successfully

Table 1: Phases

clipped in between [-0.5, 0.5] to mitigate jerk. Using createConstraint and removeConstraint, we
are able to create a vacuum gripper.

x in all the reward functions represents the distance-term used in training.

3 Phases

Phase 01 requires the end effector of the robot arm to reach to the box (the object). Once the
distance is within 0.05m, a constraint will be created between the box and the end effector. Once the
constraint id is generated, we will enter Phase 02. Phase 02 requires the end effector of the robot arm
to reach to the target location. Once the distance between the end effector and the target location is
within 0.05, the constraint will be removed. Phase 03 is when the constraint is removed, indicating
the box has been dropped at the target location.

For more detailed information please refer to Table 1.

4 Training with fixed object location and fixed target location

For the training with fixed object location and fixed target location, 5 reward functions are selected
in total.

The first three reward functions we compared are R = 2−x, R = 0.8x, and R = 1
0.5+x . In figure

2 and figure 3 the max reward learning curves are compared, followed by the normalized reward
learning curves. In figure 3, we observed that R = 2−x has overall a higher reward compared to the
other two functions at all time steps, and once it reaches to a steady phase, it still has a relatively
higher reward compared to the other functions.

In testing, the robot arm trained with the three reward functions shows little to no motivation to
reach the object within 0.05m, it displayed motion to reach towards the object, but stopped before
it can reach the goal to create constraint. R = 2−x shows the most motivation but it’s still not high
enough to complete the task. One explanation could be that the reward is already high enough for
the robot despite it haven’t reached the object within 0.05m to create the constraint. To improve this
situation, further training was designed.

We compared R = 2−x with the following two reward functions:

R2 =

{
2−x 0 ≤ x ≤ 0.07
0 otherwise

R3 =

{
2−x 0 ≤ x ≤ 0.07
0.8x − 0.5 otherwise

In figure 5, the normalized reward comparisons, although R1 has a relative steady learning rate, R2
shows higher rewards starting 3.5 × 106 time steps and increasing, while R1 has already entered the
steady phase. In testing, the robot arm trained under R2 shows an significant increase of motivation
to reach the object in order to create constraint.

5 Training with fixed object location and random target loca-
tion

We increased the complexity of the task by making the target location random within the range of
[−0.55,−0.25] & [0.25, 0.55] respectively for both x and y coordinates, and z remains 0.0. We selected
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Figure 2: Fixed object and target location - Max reward comparison

Figure 3: Fixed object and target location - Normalized reward comparison

Figure 4: Fixed object and target location - Max reward comparison-2

Figure 5: Fixed object and target location - Normalized reward comparison-2
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Figure 6: Fixed object location and random target location - Max reward comparison

Figure 7: Fixed object location and random target location - Normalized reward comparison

four reward functions, R1 = 2−x,

R2 =

{
2−x 0 ≤ x ≤ 0.07
0 otherwise

, R4 = 0.8x, and

R3 =

{
2−x 0 ≤ x ≤ 0.07
0.8x − 0.5 otherwise

We decided to keep R3 despite its learning curve in the previous training process is not ideal and
appears too noisy compared to the other ones, but because of the complexity of the task, training with
R2 could be a tougher process for the robot to learn.

In figure 7, R2 is still the most ideal reward function so far. We observed that once the robot arm
has explored enough, it will quickly act in return for the highest reward, which is only within 0.07m of
the distance term. In that way, the robot arm becomes robust at reaching the box and the target in a
time-efficient way. For R3, the issue is its learning curve is too noisy, similar to the previous training
process. In testing, the robot arm shows motivation to reach the target in only some of the trials.
R = 2−x and R = 0.8x in general show a good learning curve but the performance is not as robust as
R2.

6 Training with random object location and random target
location

We changed the object(box) location to random and within the same range as the target location.
The x, y coordinates of the box are randomly generated from [−0.55,−0.25] & [0.25, 0.55] respectively,
and z is fixed at 0.03m. We selected three reward functions: R = 2−x,

R2 =

{
2−x 0 ≤ x ≤ 0.07
0 otherwise

and R = 0.8x. We decided to exclude R3 due to its noise.
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Figure 8: Random object location and random target location - Max reward comparison

Figure 9: Random object location and random target location - Normalized reward comparison

In figure 9, we observed that on the contrary, R2 is not the most ideal reward function for this
task, R = 2−x and R = 0.8x are performing significantly better in normalized reward comparison. In
testing, the robot arm trained with R = 2−x and R = 0.8x shows approximately similar motivation
to reach the target and robustness to reach towards a random location in each trial. The robot arm
trained with R2 shows some motivation to reach but not in all trials. However, the motivation to
complete the whole task is not as high as in previous tasks, due to the complexity of this task.

7 Limitation and Future Works

One major issue we noticed throughout all the testing process is that the robot arm is reluctant to
finish the task of dropping the box to the target location. It always has a higher motivation to pick up
the box, but once that’s done, it shows a overall decreasing motivation to drop the box. One solution
is to set two different rewards, reward pick up, the distance between the end effector and the box, and
reward drop off , the distance between the end effector and the target location. While we keep track
of two distance-terms throughout the training process, we set the reward drop off slightly higher, for
example:

Reward pick up =

{
2−x 0 ≤ x ≤ 0.07
0 otherwise

Reward drop off =

{
2−0.5×x 0 ≤ x ≤ 0.07
0 otherwise

F inal reward = Reward pick up+Reward drop off

This approach is tested but the result is not ideal. The learning curves are highly noisy and show no
learning most of the time steps. In testing this approach shows little to no improvement compared to
the previous training when the rewards are not separated.

Another approach is to add environment reward with an additional bonus to encourage extra
exploration. Extra rewards such as after the box is dropped off at the target location, an additional
reward will be added to the cumulative rewards. We could also take entropy into consideration. A
higher entropy indicates a higher uncertainty in the policy, causing the agent to explore more instead
of always choosing certain actions.
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